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Abstract

This paper describes a robust system for information extraction (IE) from spoken language data. The system extends
previous hidden Markov model (HMM) work in IE, using a state topology designed for explicit modeling of variable-
length phrases and class-based statistical language model smoothing to produce state-of-the-art performance for a wide
range of speech error rates. Experiments on broadcast news data show that the system performs well with temporal and
source differences in the data. In addition, strategies for integrating word-level confidence estimates into the model are
introduced, showing improved performance by using a generic error token for incorrectly recognized words in the
training data and low confidence words in the test data. © 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Mittels automatischer Sprachverarbeitung gewonnene Daten werden mit Hilfe eines robusten Systems beziiglich
ihrer semantischen Informationen analysiert. Bestehende HMM Technologien (zur Informationsextraktion) werden
zum einen durch die Verwendung einer Rang-Topologie zur Modellierung von Satzbestandteilen variabler Lange er-
weitert, zum anderen ermoglicht eine klassenbasierte, statistische Sprachmodellgliattung optimale Verarbeitung in einem
weitem Bereich von Sprachfehlerraten. Analysen von Rundfunk- und Fernsehnachrichten bestétigten sehr hohe Feh-
lertoleranzen gegeniiber Zeit- und Quellenunterschieden in den Daten. Weiterfithrende Strategien zur Verbesserung der
Fehlertoleranz iiber die Integration von Wortkonfidenzwerten in das System werden vorgestellt und anhand von
Beispieldaten demonstriert. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Extracting entities such as proper names, noun
phrases, and verb phrases is an important first step
in many systems aimed at automatic language
understanding. While significant progress has been
made on this information extraction (IE) problem,

* Corresponding author.

most of the work has focused on “clean” textual
data such as newswire texts, where cues such as
capitalization and punctuation are important for
obtaining high accuracy results. However, there
are many data sources where these cues are not
reliable, such as in spoken language data or single-
case text. Spoken language sources, in particular,
pose additional problems because of disfluencies,
lack of explicit punctuation, and speech recogni-
tion errors. This paper addresses the problem of IE
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from speech, introducing a new probabilistic ap-
proach that builds on language modeling tech-
niques to obtain robust results even from sources
with high word error rates (WERs).

Previous approaches to processing spoken lan-
guage data have consisted largely of applying an
existing text-based system to speech data, ignoring
the fact that information is lost due to recognition
errors when moving from text to speech and the
possibility that it can be regained in part via word
confidence prediction. Our approach tackles the
speech problem directly, by avoiding the use of
features that are characteristic of written text and
by explicitly addressing the problem of speech
recognition errors through the use of smoothing
techniques and word confidence information. We
have developed a baseline probabilistic framework
that builds on the work of BBN’s Identifinder
system (Bikel et al., 1997, 1999; Miller et al., 1999),
which uses a hidden state sequence to represent
phrase structure and state-conditioned word bi-
gram probabilities as observation distributions in
a probabilistic model similar to a hidden Markov
model (HMM). The BBN model incorporates non-
overlapping orthographic features of the words,
such as punctuation and capitalization, in a bi-
gram back-off to handle infrequent or unobserved
words. A key difference in our approach is that
infrequent data is handled using the class-based
smoothing technique described in (Iyer and
Ostendorf, 1997) that, unlike the feature-dependent
back-off, allows for ambiguity of word classes.
Thus, we can incorporate information from place
and name word lists, as well as simple part-
of-speech labels, and account for the fact that
some words can be used in multiple classes. In
addition, we make use of word confidences to
further improve the robustness of the system to
speech recognition errors. This word-level confi-
dence score, which is produced by many current
automatic speech recognition (ASR) systems, is an
estimate of the posterior probability that the word
output by an ASR system is actually correct. As
such, we can use the confidence information to
ignore or place less weight on unreliable words.

The specific IE task we address in this work is
name recognition (identifying names of persons,
locations, and organizations), as well as identifi-

cation of temporal and numeric expressions. Also
known as named entities (NEs), these phrases are
useful in many language understanding tasks, such
as coreference resolution, sentence chunking and
parsing, and summarization/gisting. Named entity
identification has been examined extensively
through the Message Understanding Conferences
(MUCs) and the recent Broadcast News informa-
tion extraction evaluation, both sponsored by
DARPA in the US. As a result of these formal
evaluations, a standard paradigm has evolved for
the evaluation of named entity systems. Working
within this paradigm, we show that our system has
produced high performance on broadcast news
speech data with a wide range of WERs, including
reference transcriptions (0% WER). When applied
to transcripts generated by automatic speech rec-
ognition, the model showed high performance,
despite word error rates ranging from 28% to 13%.
We also show that integrating word confidence
information leads to additional improvements if
actual error characteristics are available for the
training data.

The paper is organized as follows. Section 2
provides further details on related work in infor-
mation extraction and speech understanding. Our
baseline model is described in Section 3, and ex-
tensions to incorporate word confidences are de-
scribed in Section 4. In Section 5, we describe
experimental results obtained by applying our
approach to the broadcast news IE task. We dis-
cuss remaining questions raised by the results in
Section 6.

2. Related work

IE from text-based sources has been a focus of
research for many years, and some systems have
reported performance approaching human per-
formance on the named entity task. However, 1E
from speech data is a very new topic of research,
and most previous work has consisted of the direct
application of text-based systems to speech data,
with some minor adaptations. In this section we
provide a brief overview of approaches to named
entity extraction from text data and a description
of existing NE systems for speech data.
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2.1. Text-based named entity systems

Named entity system performance on written
sources such as the Wall Street Journal and the
Associated Press newswire has been evaluated in
recent MUCs. Multi-lingual MUC-style evalua-
tions have also focused on the named entity task in
written Spanish, Japanese and Mandarin news
data. Most of the systems with the highest per-
formance on the written news data were manually
developed and consisted of hand-crafted rule-
based grammars, usually with domain-specific
word lists. For example, the FASTUS system
(Hobbs et al., 1997) consists of a set of large
grammars for recognizing different kinds of lin-
guistic phrases (such as named entities), where the
grammars are compiled into a cascade of finite-
state automata. The application of NameTag, a
commercial software product in development
since 1986, to the MUC NE task is described in
(Krupka, 1995); the system consists of a series of
language-dependent morphological analyzers and
syntactic pattern matchers.

In addition to the manually developed systems,
some high-performance systems have contained a
trainable component that used machine learning in
some form. For example, the system described in
(Bennett et al., 1997) is based on decision trees,
and the system in (Aberdeen et al., 1995) used the
transformation-based learning approach intro-
duced in (Brill, 1993). Bikel et al. (1997) intro-
duced a trainable probabilistic system for named
entity recognition, in which each type of entity to
be recognized is represented as a separate state in a
finite-state machine. A bigram language model is
trained for each phrase type (i.e., for each state),
and Viterbi-style decoding is then used to produce
the most likely sequence of phrase labels in a test
utterance. This model incorporates non-overlap-
ping features about the words, such as punctuation
and capitalization, in a bigram back-off to handle
infrequent or unobserved words. The approach
has resulted in high performance on many text-
based tasks, including English and Spanish news-
wire texts.

While the best performance on text-based
named entity extraction has been achieved by
hand-crafted rule-based systems, these systems are

based on many staff years of effort, and the man-
ually-developed text systems do not necessarily
port to noisy data such as speech. Trainable sys-
tems have rapidly reached the same performance
level as hand-crafted systems, and they have the
advantage of offering a short development cycle
and easy adaptability to new tasks and domains.

2.2. Named entity systems for speech

The system developed by BBN (Bikel et al.,
1997), described in the previous section, has also
been successfully applied to speech data. Despite
the fact that the original model relied heavily on
text-based features such as punctuation and capi-
talization in the language model back-off, it gives
good results on speech data without modifying
anything but the training material (Miller et al.,
1999). Our model is most closely related to this
approach, and details of differences are discussed
in the next section after the model is described
more formally.

Another closely related statistical approach to
named entity tagging in speech data was developed
at Sheffield and is described in (Gotoh et al., 1999;
Gotoh and Renals, 1999; Renals et al., 1999). In
their model, named entity tags are treated as cat-
egories associated with words, effectively expand-
ing the vocabulary, e.g. a word that might be both
a person and a place name would be represented
with two different lexical items. An n-gram lan-
guage model is trained on these augmented words,
using a single model for joint word/tag dependence
on the history rather than the two components
used in the BBN model and thus representing the
class-to-class transitions implicitly rather than ex-
plicitly. A key difference between the approaches is
in the back-off mechanism, which resembles a class
grammar for the Sheffield system. In addition, the
Sheffield approach uses a causal decoding algo-
rithm, unlike the Viterbi algorithm which delays
decisions until an entire sentence has been ob-
served, though this is not a restriction of the
model. The extended-vocabulary n-gram approach
has the advantage that it is well-suited for use di-
rectly in the ASR search process (Renals and
Gotoh, 1999).
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Another example of a text-based system suc-
cessfully adapted for use with speech data is the
TextPro system (Appelt and Martin, 1999), which
is similar to the FASTUS text-based system: a
large manually-created grammar compiled into
finite-state transducers. Adapting the grammar for
speech (or, single-case text) involved the use of
large lexicons to indicate which words were likely
to be parts of names and manual refinement of
rules to improve performance on the training data.

All three speech systems have produced results
on the task of identifying NEs in speech data
(Przybocki et al., 1999) that can be compared to
our results described in Section 5.2.

3. System overview

The mathematical model we use is similar to the
models described in (Bikel et al., 1997; Renals
et al., 1999), with several important differences. In
Sections 3.1-3.4 we will review the basic assump-
tions made in the model and discuss the differences
between our approach and other work.

3.1. Probabilistic model

As in the other probabilistic state machine
approaches, we use a hidden state sequence to
represent phrase structure, with the assumption
that each word in a document is emitted by a state
in the model. The problem is thus framed as
one of decoding the hidden state sequence sf =
($1,...,s,) most likely to have produced the
known word sequence wi = (wy,...,w), or

§¢ = argmax P(sy,...,s.|wi,...,wg)
st
= argmax P(sy,..

sk

'7SL7W17"'7WL>,

1

using the fact that multiplying by P(w}) does not
change the most likely state sequence. The search
can be simplified by assuming that the state at time
t is dependent only on the state and observation at
time ¢ — 1, in which case we arrive at the following
formulation that can be thought of as a phrase
n-gram:

L
P(s17"'7SL7W17"'7WL) :HP(Wth‘WI—hsl—l)
t=1

i~

P(W1|Wz—l7S1)P(Sz‘sz—lywz—l)7
1

where wy and sy are the start symbol and state,
respectively. As in an HMM, there are two main
terms in the model: the state-dependent observa-
tion model P(w;|w,_1,s,) and the state transition
probabilities P(s,|s;_1, w;_1 ). The observation model
can be thought of as a state-dependent bigram
language model. Note that this model is not
strictly an HMM, since both distributions violate
the traditional conditional independence assump-
tions in the dependence on the previous word,
w,_1. In addition, the HMM forward-backward
training algorithm is not needed here, since the
state topology is defined such that the state se-
quence is fully observable from labeled training
data (as described next).

In our system, the language model probability
P(w,|w,_1,s,;) is obtained via a language model
using class-based smoothing, as will be described
further in Section 3.3. In BBN’s work (Bikel et al.,
1997), which uses the same HMM-like formalism,
this emission probability is obtained via a simple
back-off bigram language model. Specifically, each
word is deterministically assigned one of 14 non-
overlapping features (such as two-digit-number,
contains-digit-and-period, capitalized-word, and
all-capital-letters), and the back-off distribution
depends on the assigned feature. The Sheffield
model (Renals et al., 1999) represents the class
transition probabilities implicitly in the quantity
P(wy, s:|w,_1,8,.1) (in our notation), by treating s,
as a word attribute. For the unobserved (w;,s;)
combinations, the “back-off”” is effectively a class-
dependent unigram combined with the class tran-
sition probability: P(wy,s|w._1,8-1) = P(wi|s,) X
P(St|Wt—l>St—l)-

3.2. Model topology

The state topology of our model assumes that
phrases can have one or more words and that any
phrase type can follow any other. The different
phrase types (including other for words that are
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not part of NEs) are arranged in parallel, with any
phrase type being allowed to follow any other. An
important characteristic of the topology is that
each phrase type has two states associated with it:
the first models the first word of the phrase, and
the second models all successive words. Phrase
boundaries can thus be reliably determined, even
when two phrases of the same type occur consec-
utively. This two-state topology can effectively
model words that are common in named entities
but that occur in a certain phrase position. For
example, the word “City” is common in locations
such as “New York City” and “Mexico City”, but
it almost always occurs at the end of the phrase
and would be generated by the second state of the
location model.

We also model both utterance boundaries and
phrase boundaries explicitly in the topology, be-
lieving that there are important contextual effects
associated with both. In particular, utterance
boundaries are highly correlated with sentence and
major clause boundaries in written text. Utterance-
initial and utterance-final states are included at the
beginning and end of the network, with the in-
sertion of a pseudo ‘“boundary” observation at
each end of a word sequence as is standard in
speech recognition language modeling.

Fig. 1 shows a simplified view of the topology.
Note the pairs of states for each phrase type — in
this case only those for location and other are
shown in detail. In general, the second of each pair
can only be reached from the first (and itself, via a

)
Location] —~{_Location2 —

Fig. 1. Simplified model topology.

self-loop), while the first can be reached from any
other state except the end state.

The HMM topology provides an implicit model
of phrase length, as the self-loop transition prob-
ability to a state corresponds to a geometric dis-
tribution of state duration. For a certain phrase
type, the probability of a phrase of length [ is as
follows:

P(l)y=1-p, 1=1,
P()=pg" (1 —q), [>1,

where p is the transition probability between the
first and second state of the phrase model, and ¢ is
the seclf-loop probability for the second state.
(Note that a benefit of the two state model is a
somewhat more accurate duration model than the
geometric distribution because of the parameter p
related to the probability of length-one phrases.)
Modeling length in this manner (via the HMM
state transition probabilities) is useful for identi-
fying phrases such as NEs, since phrase types have
a wide range of length distributions. For example,
in the broadcast news data used in this work, the
average phrase length for NEs varies from 1.4
words (for location phrases) to 3.4 words (for
money phrases), while the average length of non-
entities (other phrases) is 15.2 words.

3.3. State-dependent language models

In order to produce a robust model applicable to
spoken language data, we wish to limit the depen-
dence on the actual words in the text and on fea-
tures derived from their orthographic realization.
While orthography features — such as punctuation,
capitalization, and the presence of non-alphabetic
characters — provide useful information for dis-
tinguishing tokens in textual data, they are nor-
mally absent in speech data. For example, $30.25
in text becomes ‘“‘thirty dollars and twenty five
cents” in speech transcriptions. In addition, this
example shows that there can be several spoken
words that correspond to a single orthographic
token, highlighting the need for a topology to
handle multi-word phrases (since defining multi-
word lexical items for all such cases is impractical).



100 D.D. Palmer et al. | Speech Communication 32 (2000) 95-109

We address the need for more robust features
by using the class-based smoothing technique de-
scribed in (Iyer and Ostendorf, 1997), which pre-
viously has been used to develop speech
recognition language models that successfully
combine information from many sources. Specifi-
cally, the bigram probability is obtained by
smoothing over the possible linguistic classes for
the predicted word in the bigram:

P(Wt|Wt—laSt) = ZP(Wt‘Wt—lyCkyst)P<Ck‘Wt—175t)a
k

where ¢, ranges over the possible linguistic classes
of word w,. An advantage of this method over the
simple back-off solution is that it allows us to in-
corporate information such as simple part-of-
speech labels and account for the fact that some
words can be used in multiple classes. Note that
this also distinguishes our approach from typical
implementations of a class grammar, which
assume words belong to a single class and there-
fore no sum is needed. When available, the stan-
dard “clean text” features such as capitalization
and punctuation can also be included in this way;
however, the system we discuss in this paper has
achieved high performance without including
clean text features in the model.

As discussed in Section 3.2, each type of phrase
to be identified is represented by a pair of states in
the model topology. The first state of each pair
always represents the first word of the phrase, and
the emission probability for the first state is de-
termined by conditioning on the phrase start token
rather than the preceding word. The emission
probability for the second state is determined
using both words of the bigram. Since the emission
probabilities are very similar for the two states in a
pair, we pool the data for training the unigram for
the back-off for the two states.

Unlike data from text sources, such as news-
papers, the words in transcriptions that are output
by a speech recognizer may not be the “correct”
words. When the words are out of the recognizer’s
vocabulary, the recognizer will frequently find a
sequence of short high-frequency words to map to
the unknown word, in which case it is impossible
to recognize the spoken named entity. However, in
other cases, the recognized word is a variant of the

spoken word, i.e. missing a plural or the incorrect
verb tense. In these instances, the POS smoothing
algorithm may lead to more robust performance in
the face of errors, because of increasing the prob-
ability of such unseen events. As will be shown
later, we do observe improved performance due to
POS smoothing in the presence of recognition
errors, though not for the reference transcripts.

3.4. Parameter estimation

One advantage of the model topology described
in Section 3.2 is the fact that, given training data
hand-labeled with phrase type and extent, the state
corresponding to each word is completely observ-
able. The first word in each phrase is emitted by
the first state, while all remaining words are
emitted by the second state. Consequently, the
maximum likelihood values of the transition pa-
rameters can be easily calculated from hand-
labeled state transition counts in the training data
without the need for the forward—backward algo-
rithm. However, because the state transitions are
conditioned on the previous word, the model is
susceptible to sparse data problems. In all aspects
of the statistical model, we use linear interpolation
to compensate for sparse data, smoothing with
lower order statistics. In the case of the state
transitions, the interpolated formula becomes

P(St|st—l7wt—l)

= AP (se|s—1, wir) + (1 = D) P(si|s,1),

where Py 1s a maximum likelihood (relative fre-
quency) estimate taken directly from training data.
The word-dependent interpolation constant 4,
type C from (Witten and Bell, 1991), is given by
the formula

n(s, 1, Wi_1)
n(s1, wie1) +r(s—1, W 1) ’

)\.:

where n() is the number of times a context occurs,
and () the number of unique state outcomes of
that context. (This interpolation formula can also
be rewritten as a back-off estimate, although this is
not true for interpolation methods in general.)
Note that the lower order component P(s,|s,_;) is
similarly estimated by smoothing Py (s,]s,—1) with
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the first-order maximum likelihood distribution
PML (S,).

Sparse data problems in the state-dependent
bigrams are also addressed using linear interpola-
tion with lower order statistics:

P(Wt|Wt—lvckaSt)

- ;“PML(Wt|Wt—17Ck7St) + (1 - ;L)P(Wl‘ckast)v

where the interpolation constant

n(wt—b Ci,s S[)
n(wtflac/ﬁst) + r(Wf,th,St)

/’L:

is analogous to that for the state transitions. A
similar equation describes the interpolation of the
state- and class-dependent unigram p(w;|cy,s;)
with the state-dependent unigram p(w,|s,), which is
in turn interpolated with the uniform distribution.

Training the language model consists of first
assigning a part-of-speech tag to each word in
the training data, then calculating the bigram
statistics for the formula above. More specifically,
the words in the training data are labeled with
part-of-speech information using the MITRE
part-of-speech tagger, an implementation of the
rule-based part-of-speech tagger described in
(Brill, 1992). The tagger assigns to each word one
of 40 tags from the Penn Treebank tagset (Marcus
et al., 1993). The MITRE tagger has a reported
accuracy of 93-95% on single-case text with no
punctuation, which is similar to the speech tran-
scriptions we are processing. After POS tagging is
completed, the training data is separated into its
component “languages”. For example, the location
language model is estimated by creating a new file
containing all the words (and corresponding POS
tags) from location phrases in the training data,
with each phrase treated as a separate utterance. A
bigram language model is estimated for each of
these training data subsets. Note that performance
might be slightly improved by treating the POS tag
as a hidden variable or by using the N-best tags
rather than the single best tag in training. How-
ever, since the tagger is quite accurate and the tags
are only used for smoothing, we felt that the small
anticipated performance gains would not be worth
the added training complexity.

4. Use of word confidences

In this section we describe methods for inte-
grating word-level confidence information into the
baseline model introduced in the previous sections.
We assume that the output of a recognizer is a
sequence of words wy,ws,...,w, with an associ-
ated sequence of confidence scores y,,75, ..., 7,»
where v, is an estimate of the posterior probability
that the word w, output by an ASR system is
correct given various features associated with the
speech signal at the time of that word and the
model used in the recognition process. The esti-
mation of word confidence has been the subject of
much study (Siu and Gish, 1997; Gillick et al.,
1997; Kemp and Schaaf, 1997; Weintraub et al.,
1997); the focus here is how to use the confidence
score and not how to estimate it.

4.1. Decoding strategies

The word and confidence score sequence can be
interpreted as a lattice, as illustrated in Fig. 2, with
an error branch (denoted with €) in parallel with
each word. The probability of taking the word w,
branch and the error branch at time ¢ are y, and
1 —v,, respectively. The confidence scores can be
thought of as a low-cost alternative to storing a
large word lattice annotated with acoustic and
language model scores. There are several ways one
could envision using such a lattice, including
Viterbi decoding to find error tokens and NE labels
jointly, summing over the different possible paths
while finding the most likely NE sequence, and
eliminating low probability branches in the lattice
before doing the named entity decoding. Here we
explored variants of all three alternatives, as de-
scribed below.

€ €

Fig. 2. NE decoding lattice with word and error tokens.
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4.1.1. Joint error and NE state decoding

If one has the goal of jointly finding errors and
named entities, then the decoding problem be-
comes one of finding the most likely path through
the lattice above. Let K, € {0, 1} be an indicator of
whether there is an error at time ¢. Using the no-
tation K, S and W for the time sequence of the
respective variables and A to represent the acoustic
(or other) evidence of an error, the decoding
problem can be expressed as

(S,K)" = argmax; p(S,K|W,A)
S.K
= argmax p(S,K,W|A4) (1)
S.K

= argmax p(W,S)p(K|A), 2)

where W, = W, when K, = 0 and is the error token
otherwise. We assume that errors are conditionally
independent given the full sequence of error evi-
dence p(K|4) =[], P(K,|4), to simplify decoding,
with P(K, = 0|4) = y,. The other term, p(7,S), is
just the named entity model described in Section 3
except that there are now error tokens in the
“word” inventory.

The decoding algorithm is just a Viterbi update
on a state space that is effectively doubled in size,
o,(i,w,) = max max J,(j,o)

J ,

A=W;_1,€
X P(Sl = l"S,,] :j7 a)ytP(Wl|OCa S = i)a

3)

0,(i,€) = max max J,(j, o)

J A=Wy ,€
X P(s = ilsi1 = j,a) (1 = ,)P(efor, s, = i),
(4)

where 0,(i,«) is the probability of the most likely
NE sequence ending at state i in branch
o € {w;, ¢}. Note that, just as acoustic word mod-
els in ASR systems differ and thus can require
different language model weight factors, it may be
useful to include a y, weight factor in the decoding.
However, we did not explore the use of such a
tuning parameter.

One problem with this model is that the error
token represents a large class of possible errors, so
that the phrase language model probability can be
thought of as

p(W, = f‘wt—last) = Z P(W/|wt—175t)a
W/;éwtref

where w® is the reference word label at time 7.
Thus, the error token has a much larger proba-
bility than the individual words. This puts too
much weight on errors, so we introduce a heuristic
scaling factor that normalizes these probabilities
by the size of the vocabulary. Also note that this
approach can find hypothesized words that cor-
respond to substitution or insertion errors, but it
cannot detect deletion errors.

4.1.2. Confidence weighting

If one is not interested in knowing the location
of errors, an alternative way to use the lattice is to
sum over the possible error paths. The solution
involves replacing the second “max” in Egs. (3)
and (4) with a sum over o. It can be thought of as a
modified Viterbi algorithm, with a forward com-
ponent to capture error state evolution.

In order to assess the idea of weighting without
changing the decoder, we implemented an ap-
proximation of this search that does not augment
the decoder state but uses a weighted combination
of bigrams in the state update to take into account
ASR uncertainty, i.c.,

P(wilwi1,8:) < [7,7,1P(Wilwi-1,5,)
+7(1 = y,)P(wile, )
+ (1 =7)7 1 Pelwit, s0)
+ (1 =9)(1 = y,_)P(ele,s)]. (5)

This approach will be referred to as the mixture
approximation.

4.1.3. Confidence thresholding

An alternative method of integrating the word
confidence information into our model at decoding
time involves using confidence thresholds. In this
method, as in the baseline system, a single state-
dependent language model probability is calculat-
ed. However, a word in the bigram is replaced with
the error token whenever its confidence value is
less than a threshold value 7. For example, if
v, <T and vy,_, > T, the probability would be
given by P(w,|w,_,s,) = P(e|w,_1,s,). This corre-
sponds to pruning branches from the lattice, so
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that there is only a single path, specified before NE
decoding begins. In contrast to using confidences
as weights, the e token in the language model is
used only for words with low confidences, as de-
fined by the threshold value T.

4.2. Training with error tokens

In order to evaluate hypotheses with the error
token at decoding time in the manner described
above, the language model (and thus the training
data) must also contain errors in the form of the e
token. We experimented with three methods of
inserting the error token, based on simulated, hy-
pothesized and actual errors.

Simulated errors. Given a set of ASR data
which is independent of the reference transcript
(from which we normally train the system), we can
simulate word errors in the transcript based on the
distribution of errors in the ASR data. Hypothe-
sizing that the frequencies of errors made by the
ASR system vary depending on the type of word
being recognized and its length, we define several
categories of words, based on the number of syl-
lables and whether it was a function or content
word. Examples of our word categories are one-
syllable function word, two-syllable content word
and out-of-vocabulary word (a word not in the
ASR system lexicon). For a set of ASR data, we
count how often the ASR system produced three
different error types — single word substitution,
single word deletion and multiple word split (i.e.
substitution plus insertion) errors — for words in
each category. From these counts, we estimate the
probability that the recognizer will produce the
three different types of errors for each input word.

Using the error probabilities, we simulated
errors in the training data by randomly generating
errors according to the training word categories. A
substitution caused the training word to be re-
placed with an e token; a multiple word split re-
sulted in two e tokens. When a deletion was
generated, the word was simply deleted from the
transcript. (Note that this gives only an approxi-
mation of what would be observed in test data,
since some types of insertions are not predicted.)
The language model was trained from this data,
with simulated e tokens replacing some words but

retaining the part-of-speech tags from the refer-
ence transcript.

Actual errors. To reduce the mismatch between
training and test data further, given a set of ASR
data which overlaps with the labeled training data,
we can identify actual recognition errors in the
data and replace these with the € token. To explore
this possibility, we obtained from Dragon a large
set of ASR broadcast news data for the same
broadcasts that had been annotated with NE in-
formation for the Broadcast News IE evaluation.
By aligning the NE annotated files with the ASR
data, we were able to replace the actual substitu-
tion and insertion errors in the training data with
the e token, producing errorful ASR data with NE
and part-of-speech annotation for use in training
the language models.

Hypothesized errors. The Dragon recognizer
output described above was also marked with
confidence scores. Thus, we can extend the idea of
a confidence threshold, as introduced in the de-
coding section, by replacing training words with
error tokens in cases where the word confidence in
the training data is below a threshold. This should
hopefully produce a better match between the
training and test conditions when the confidence
threshold decoding method is used.

5. Experiments

The system described above was evaluated on
the Broadcast News IE task. In addition to eval-
uating the system in the standard training para-
digm, which we describe in the next section, we ran
several contrasting experiments to determine the
contributions of various system components to
our NE performance, as described in the sections
to follow.

5.1. Evaluation paradigm

As a result of the many formal DARPA-spon-
sored named entity evaluations, a standard eval-
uation paradigm has evolved. The common
paradigm consists of several steps. First, a set of
manually-annotated training data is prepared
according to guidelines that explicitly define the
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entities to be identified. This training data can be
used, via any combination of machine learning
and manually-written rules, to develop a system
which can automatically annotate unseen data. In
our case, there is no manually-written component
of the system; it is trained entirely via machine
learning. The system is then run on one or more
common “blind” test sets, and the output is scored
against a manually-annotated “key”. This para-
digm allows the direct comparison of the perfor-
mance of different systems on the same test data.

For the Broadcast News IE task which we dis-
cuss in this work, the training and evaluation data
consisted of a combination of American broadcast
sources from a range of dates between 1996 and
1998. The data consisted of a mixture of broadcast
domains: world news summaries such as CNN’s
“The World Today”, topical news shows such as
ABC’s “Nightline’’ and CSPAN’s “Public Policy”,
and radio news shows such as NPR’s “All Things
Considered” and PRI’s “Marketplace”. The
complete training set consisted of more than 1.6
million words of manually transcribed data an-
notated with about 80,000 NEs; roughly 60% of
the training data had been prepared for the official
Hub-4 NE evaluation (Robinson et al., 1999), and
the remaining training data was prepared inde-
pendently by BBN and later made available to the
community. A separate evaluation set, also pre-
pared for the Hub-4 NE evaluation, consisted of
about 32,000 words and 1800 NEs. To enable
comparison of system performance for output from
different speech recognizers, four versions of the
evaluation set were prepared, with a range of
WERSs from 28.3% to 0% (the reference transcript).

System performance for the NE task is evaluated
using an automatic scoring program (Chinchor,
1995; Burger et al., 1998), which compares the
correct phrases in the key document to the
phrases identified by the system in the hypothesis
document. The scoring program counts the num-
ber of phrases in the key document (N) and the
number of phrases in the automatically generated
hypothesis document (M), as well as identifying
correct phrases (C), substitutions (S), deletions
(D), and insertions (/). Using the fact that
N=C+S+Dand M =C+ S+ 1, several scores
can be calculated from these counts. The most

common scores are based on two measures — recall
and precision. Recall is the percent of the “correct”
NE:s that the system identifies, R = C/N; precision
is the percent of the phrases that the system
identifies that are actually correct NE phrases,
P = C/M. The recall and precision scores are then
used to calculate the F-measure, which is the
harmonic mean of recall and precision,
F =2PR/(P + R). Human performance on the NE
task has been determined to be quite high, with
F-measures better than 98% (Robinson et al., 1999).
Whereas the F-measure provides a performance
measure for NE systems, the slot error rate (SER)
was proposed in (Makhoul et al., 1999) as an error
measure for the NE task, analogous to the word
error rate metric used for evaluating speech rec-
ognition performance. The SER can also be com-
puted directly from the raw counts and is defined
as E=(S+D+1)/N. For speech data, both
F-measure and SER can be calculated in three
dimensions based on three categories of possible
errors: the phrase label (“type”), the phrase
boundaries (“‘extent’) and the word-level phrase
transcription (“‘content’); our results in this paper
represent an equally-weighted average of the type,
extent and content scores.

5.2. Baseline system performance

Using this experimental paradigm described in
the previous section, we evaluated our system. The
lexicon consisted of 63k words representing a
combination of the lexicons from two large-
vocabulary speech recognition systems as well as a
list of words from the MITRE part-of-speech
tagger.

Table 1 shows our system results for each of the
four common evaluation data sets, with the
training data consisting of the entire 1.6 million
word corpus. For the reference transcriptions and
lower error rate systems, our scores are compara-
ble to the best reported results. ! For the high

! For complete evaluation results see (Przybocki et al., 1999).
Our results in this paper are slightly better than the MITRE
system in the evaluation (Palmer et al., 1999), which did not
have access to the full training set used here.
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Table 1
Baseline system performance for a range of word error rates on
the full 1999 Hub-4 NE test set

WER (%) F-measure Slot error
28.3 71.3 46.3
14.5 82.5 29.5
13.5 81.6 30.8
0 90.2 16.1

error rate case, our system gives slightly better
results (71.3 versus 70.3 F-measure), suggesting
that the POS smoothing technique is more robust
to ASR errors. In addition, the good results
(90.2% F-measure) on the reference transcription
could likely be improved by including orthographic
features such as capitalization and punctuation,
since these features are present (although some-
what inconsistent) in the reference texts. As with
other speech NE systems, we observe that the NE
performance degrades more slowly than the WER,
1.e., each recognition error does not result in an NE
error.

5.3. Effect of training data changes

Our objective in using class-based smoothing in
the bigram language model was to produce more
robust models than the simple bigram model,
which is dependent exclusively on word identity. In
order to determine the contribution of the class-
based smoothing in the language model, we ran
experiments with language models trained with
and without class information using different
training configurations. The different training
configurations included varying the amount of
training data and varying the source with respect
to the test data.

For the language models without class infor-
mation, we retrained the language model, col-
lapsing all POS tags to a single tag, effectively
removing the class smoothing. This is roughly
equivalent to other statistical NE systems in that
the bigram probability is determined primarily by
the word identities. However, our use of Witten—
Bell interpolation differs from the feature-based
back-off.

Effect of training data size. Miller et al. (1999)
published results of experiments in which they

trained their NE system with different amounts of
training data, ranging from 100k words to over
one million words. They found that overall per-
formance in NE recognition increased in a log-
linear fashion; that is, for each doubling in the
amount of training data, the NE performance
improved by a few points. We performed similar
experiments with our system. We divided the 1.6
million word training set into four subsets and
created different training sets from the subsets in
all possible combinations. Evaluating the resulting
systems on a separate test set with the class
smoothing produced log-linear results over a range
of 400k—1.6M words, similar to those reported in
(Miller et al., 1999), for both the reference word
strings and the high error rate (28.3%) ASR data.
Removing the POS smoothing from the language
models resulted in a consistent degradation in
named entity performance (1-2% F-measure,
absolute) forall training sets when testing on the high
error rate output. No difference in performance
was observed on the reference data. Thus, the POS
smoothing helps with recognition errors but not
reference transcriptions with reduced training
data. These results indicate that it is not just the
general smoothing property that is helping, but
specifically the POS smoothing (in combination
with standard LM smoothing of components). We
conjecture that simply training with a different LM
smoothing (back-off) technique without POS
smoothing would not have the same positive effect.

Effect of training data source. In the paradigm
of the previous experiments, both the training and
evaluation data consisting of broadcasts from a
range of dates (1996-1998) and broadcast
domains. Since the class-based smoothing that we
use has been the most effective in combining sparse
data from multiple domains, as shown in (Iyer and
Ostendorf, 1997), it is interesting to investigate
whether the POS smoothing technique makes the
IE model more robust to training source differences
as well. Thus, we conducted two further experi-
ments on the reference transcript data. In both
experiments we defined training and test sets that
would have less overlap in content than the larger
training and test data used in the previous section.

In the first experiment, we defined a new
training set that consisted of the CNN world news
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broadcast programs in the larger training set; this
set comprised 63 broadcasts with 365k words. We
defined an independent test set consisting of eight
NPR broadcasts. The training data thus consisted
entirely of broad coverage television news data
while the test data consisted of topical radio news
data. Comparing the performance of language
models trained with and without class-based
smoothing on this data indicated that the class-
based smoothing improved overall F-measure
performance by 2.3% relative.

In the second experiment, we defined a training
set consisting of the files from the larger training
data set that represented broadcasts from early
1996, 40 broadcasts with 200k words. We defined
an independent test set consisting of the § broad-
casts from the middle of 1998 that represented the
largest time difference between broadcasts in the
data. Comparing the performance of language
models trained with and without class-based
smoothing on this data indicated that the class-
based smoothing improved overall F-measure
performance by 1.6% relative.

5.4. Using confidences

The experiments with word confidences were
based on output from the Dragon systems recog-
nizer. As described in Section 4.2, the training data
was a subset of 90 broadcasts (roughly 600k
words) for which recognizer output was available.
The recognizer word error rate on the training
data was 29.4%, and the average confidence value

was 0.70. The test data was a subset of the stan-
dard test set used in the previous section, consist-
ing of three news broadcasts (about 17k words) for
which word confidence scores were available. The
baseline system performance for this test set was
F = 68, where the baseline corresponds to ignor-
ing the confidence scores in decoding and using the
reference transcriptions in training.

We explored several different methods for
including error tokens in the training data, as well
as the different decoding methods proposed. The
training variations compared (i) use of reference
versus ASR transcriptions, (ii) three different ways
for introducing the error token (based on confi-
dence values, ASR errors or simulated errors), and
(iii) use of copies of the training set with and
without errors. The decoding algorithms (all
Viterbi) differ in terms of whether they are based
on a single word (and €) sequence hypothesis, a
lattice, or the mixture approximation. The results
are summarized in Table 2.

The first row of Table 2 corresponds to the
baseline system, representing the score obtained by
training the system on the reference transcript and
decoding the test data without error tokens. The
next two rows illustrate the degradation in per-
formance associated with having errorful training
data and not accounting for errors in decoding. In
experiment 2, not surprisingly, a significant degra-
dation is observed when training with incorrect
words. Experiment 3, in which incorrect words are
replaced with the error token in training, gives
only a small loss in performance. This system

Table 2
Results on the test subset for different training/decoding strategies using the Dragon Systems recognizer and confidence output
Expt. number  Training Decoding F-measure
Source € token Algorithm € token
1 Reference None Single hyp None 68
2 ASR None Single hyp None 63
3 Reference ASR errors Single hyp None 67
4 ASR T=05 Single hyp Subst., 7=0.5 60
5 ASR T7=02 Single hyp Subst., T=0.2 64
6 Reference ASR errors Single hyp Subst., T=0.5 63
7 Reference ASR errors Single hyp Subst., T =0.2 67
8 Reference ASR errors Mixture All 63
9 Reference Simulated errors Mixture All 62
10 Reference(1) + reference(2)  None(1)+ ASR errors(2) Single hyp Subst.,, 7=0.2 70
11 Reference(1) +reference(2)  None(1)+ ASR errors(2) Lattice All 71
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corresponds to throwing away all training n-grams
with error tokens. Note that throwing away these
n-grams is much better than using the errors, i.e.
using the ASR data as the training source.

The next four experiments (rows 4-7) represent
different criteria for replacing words with the error
token in both training and decoding. For decod-
ing, words are replaced with the error token
depending on whether the confidence score is below
some threshold. Because such a threshold-based
substitution will also replace correct words with the
€ token, it requires a suitable choice of the confi-
dence threshold. We completed systematic experi-
ments with incrementally larger threshold values
between 0.05 and 0.5 and found that a threshold of
0.2 produces the largest performance increase while
a threshold of 0.5 produces the worst performance.
(The T = 0.5 threshold corresponds to choosing
the most likely label, so lower thresholds represent
a conservative usage of the error token.) Note that
the threshold depends on the particular confidence
estimator used, each of which may have different
biases in the estimates. We also found that better
performance could be obtained by using actual
errors to determine the e tokens in training than by
using the recognizer output and confidence scores.
However, performance for the best case system was
still below that of the baseline; i.e., confidence
scores did not lead to performance improvements.
Interestingly, there was no gain from using the
error tokens in decoding when they are in
the training data (experiments 3 versus 7).

Comparing experiment 8 to experiment 7 shows
that the mixture approximation to the forward
lattice decoding algorithm leads to significant
degradation in performance. Summing over the
error branches effectively makes the observation
distributions flatter when error tokens are likely
(since error tokens occur in all states). The mixture
approximation effectively double counts the error
branches by using the two sequence error proba-
bilities at each time step, thereby increasing the
flattening effect, which may explain the degrada-
tion in performance. Training with simulated
errors (experiment 9), which was evaluated in the
mixture decoding paradigm, shows only a small
degradation in performance for using simulated
versus actual errors.

We hypothesized that one reason for the dis-
appointing performance of the error substitution
decoding algorithm (experiment 7) was because
training data was effectively lost by substituting
some of the words with the error token. Therefore,
we retrained the model from a doubled training set
that included the unmodified reference transcrip-
tions combined with the version using the error
tokens. The modified training led to a performance
improvement over the baseline (F-measure 70
versus 68). Using the same training method with
the joint error and state lattice decoding algorithm
gave the best case F-measure of 71. The precision
and recall rates for the best case system were P =
0.70, R =0.72, compared to P =0.67, R =0.69
for the baseline system.

6. Discussion

In this work we have introduced a robust
framework for the labeling of linguistic structure
in spoken language data, extending previous
HMM IE models to incorporate class-based
n-gram smoothing and a state topology designed
for explicit modeling of variable-length phrases.
Experiments show that the model is comparable to
the best reported result on reference transcriptions
(0% WER) and gives improved performance for
data with speech recognition errors. In addition,
for information extraction tasks for which the
source of the training data sets differs from that of
the evaluation data, the class-based smoothing can
also produce higher performance on reference
transcriptions of speech data. Our current system
was developed with speech data in mind; conse-
quently, we do not use capitalization or punctua-
tion, even when they are present in the training
data or reference transcripts. However, the mod-
eling framework is extensible; it allows for the in-
tegration of any additional features, including
features unique to text data, such as punctuation
and capitalization. Similarly, while our initial
language model implementation consists of class-
based smoothing over part-of-speech categories,
the classes we use are not limited to part-of-speech
categories. They could also be semantically defined
or automatically generated classes (via clustering),
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and word lists can also be used to assign more
specific class labels. We also explored different
approaches for adjusting the probabilistic model
to better match the error characteristics of an ASR
system for IE from speech data, finding that per-
formance can be improved by introducing an error
token in training and test data based on known
recognition errors and word confidence prediction,
respectively.

The results raise some unresolved questions. A
small performance degradation was observed
using simulated versus actual errors in the training
data. Further exploration of error simulation
would be of interest because of the lower cost of
training with simulated errors. Similarly, while
performance degradation was observed using ASR
output in training, it may be that improved con-
fidence estimates combined with the lattice de-
coding algorithm could make this a viable
approach.

Finally, we note that there are connections be-
tween this work and statistical models used in
other language understanding problems. Varia-
tions of phrase language models have been used in
a range of speech understanding tasks, including
(Seneff et al., 1992; Meteer and Rohlicek, 1993;
Gorin et al., 1997; Haas et al., 1997a,b). These
models strive for a more detailed understanding
(“deeper”, e.g. in the sense of being able to take
action on a command but not in the sense of true
understanding) than the shallow representation
aimed for here, but cover much more restricted
domains. A better understanding of where the
different variations are useful would likely benefit
all applications.
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